Зачем метрику качества регрессии возводить в квадрат?
Речь идёт о среднеквадратичной ошибке (Mean Squared Error, MSE). От средней абсолютной ошибки (Mean Absolute Error, MAE) она отличается тем, что в ней разница между предсказанным и истинным значением возводится в квадрат. Но зачем это нужно?
▪️MSE сильнее штрафует за большие ошибки. У этого есть как плюсы, так и минусы. Если мы действительно очень не хотим получать большие ошибки, то квадратичный штраф за них очень полезен. Но если в тестовых данных есть выбросы, то использовать MSE становится менее удобно.
Зачем метрику качества регрессии возводить в квадрат?
Речь идёт о среднеквадратичной ошибке (Mean Squared Error, MSE). От средней абсолютной ошибки (Mean Absolute Error, MAE) она отличается тем, что в ней разница между предсказанным и истинным значением возводится в квадрат. Но зачем это нужно?
▪️MSE сильнее штрафует за большие ошибки. У этого есть как плюсы, так и минусы. Если мы действительно очень не хотим получать большие ошибки, то квадратичный штраф за них очень полезен. Но если в тестовых данных есть выбросы, то использовать MSE становится менее удобно.
#junior #middle
BY Библиотека собеса по Data Science | вопросы с собеседований
Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283
The seemingly negative pandemic effects and resource/product shortages are encouraging and allowing organizations to innovate and change.The news of cash-rich organizations getting ready for the post-Covid growth economy is a sign of more than capital spending plans. Cash provides a cushion for risk-taking and a tool for growth.
The Singapore stock market has alternated between positive and negative finishes through the last five trading days since the end of the two-day winning streak in which it had added more than a dozen points or 0.4 percent. The Straits Times Index now sits just above the 3,060-point plateau and it's likely to see a narrow trading range on Monday.
Библиотека собеса по Data Science | вопросы с собеседований from us